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Al through Building Robots 1
..f "3 1. Introduction
I |
s @ There has been considerable philosophical debate on the possib:.ity of “human level” arti-

ficial intelligence, centered around the notion that it requires as background the totality of
practices which make up the human way of being in the world [Dreyfus 72, 86].

E:':: In this note we use a technical rather than philosophical argument that machines must
‘:;;:. indeed have a rich background of experience of being if they are to achieve human level
f."‘f": intelligence. Unlike Dreyfus however, we conclude that artificially intelligent behavior is
B achievable with computers without the aid of holograms, resonance, or other holistic tech-
s niques. Rather, by adopting an incremental construction approach, progress towards this
‘:ﬁt goal can be expected soon. (Naturally the author and his students are currently following
iy this enlightened path.)
€
2. Three observations about the failure of Al.
~",'.'2;i
::(g. In this section we give three reasons why Al has failed to live up to its early promises, and
‘::i‘:; moreover why i1t will not live up to its current promises.
e
. A. A lesson from evoliution
W
f:' N We already have an existence proof of the possibility of intelligent entities-human beings.
:. Additionally many animals are intelligent to some degree. (This is a subject of intense
5?v5 Y debate much of which really centers around a definition of intelligence.) They have evolved
‘ over the 4.6 billion year history of the earth.
éé It is instructive to reflect on the way in which earth-based biological evolution spent
:z:?.n its time. Single cell entities arose out of the primordial soup roughly 3.5 billion years ago.
;"'%: A billion years passed before photosynthetic plants appeared. After almost another billion
??\}: and a half years, around 550 million years ago, the first fish and vertebrates arrived, and
then insects 450 million years ago. Then things started moving fast. Reptiles arrived 370
:',o: million years ago, followed by Dinosaurs at 330 and Mammals at 250 million years ago. The
:.:',:: first primates appeared 120 million years ago and the immediate predecessors to the great
'.:f',:j apes a mere 13 million years ago. Man arrived in roughly his present form 2.5 million years
.-,:: ago. He invented agriculture a mere 19000 years ago, writing less than 5000 years ago and
“expert” knowledge only over the last few hundred years.
;:;, This suggests that problem solving behavior, language, expert knowledge and applica-
t,:,g tion, reason. etc.. are all pretty simple once the essence of being and reacting are avatlable.
:;,:l' That essence 1s the ability 1o move around in a dynamic environment, sensing the surround-
‘::k: ings to a degree sufficient to achieve the necessary maintenance of life and reproduction.
. This part of intelligence is where evolution has concentrated its time --it is much harder.
5 ‘Lovejoy 81 has argued that human level intelligence was an extremely unlikely ac-
z cident. The basis of his argument is that evolutionarily there is “no a priori advantage
A

:": to intelligence, although it is a clear and unmistakable reproductive hazard” (increased

\ encephalization does not in itself lead to dominance, e.g. only two species of Proboscidea
remain and are survived by less-encephalized but equally large occupants of similar ecolog-
R W@) ical zones - the hazard is the length of time necessarily devoted to parenting of offspring
during the full development of the vastly more complex central nervous system). He argues
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Al through Building Robots 2

that evolution did not select for the majority of characteristics of the human brain in the
context of intelligence. By and large the structures were already there in more primitive ho-
minids. The evolution of habitual bipedal locomotion induced changes in the oral diaphram
and in the nasopharyngeal passage. This, combined with changes induced in the oral cavity
by greater seasonality ot .ood sources, gave man the capacity to speak. He argues that this
capacity reprogrammed the existing form of the brain into a symbol processing system at
the higher levels and gave rise to cognition.

This supports my contention that mobility, acute vision and the ability to carry out sur-
vival related tasks in a dynamic environment provide a necessary basis for the development
of true intelligence. iMoravec 84; argues this same case rather eloquently.

B. Abstraction as a dangerous weapon

Artificial Intelligence researchers are fond of pointing out that Al is often denied its rightful
successes. The popular story goes that when nobody has any good idea of how to solve
a particular sort of problem (e.g. playing chess) it is known as an Al problem. When an
algorithm developed by Al researchers successfully tackles such a problem, however, Al
detractors claim that since the problem was solvable by an algorithm, it wasn’t really an
Al problem after all.

Thus Al never has any successes.

But have you ever heard of an Al failure?

I claim that Al researchers are guilty of the same (self) deception. They partition the
problems they work on into two components. The Al component, which they solve, and the
non-Al component which they don’t solve. Typically Al “succeeds” by defining the parts
of the problem that are unsolved as not Al. The principal mechanism for this partitioning
is abstraction. Its application is usually considered part of good science, not, as it is in fact
used in Al, as a mechanism for seif delusion. In Al, abstraction is usualiy used to factor out
all aspects of perception and motor skills. 1 argue below that these are the hard problems
solved by intelligent systems, and further that the shape of solutions to these problems
constrains greatly the correct solutions of the small pieces of intelligence which remain.

Early work in Al concentrated in games, geometrical problems, symbolic algebra, the-
orem proving. and other formal systems (e.g. [Minsky 68i, [Feigenbaum and Feldman 631).
In each case the semantics of the domains were fairly simple.

In the Jate sixties and early seventies the blocks world became a popular domain for
Al research. It had a uniform and simple semantics. The key to success was to represent
the state of the world completely and explicitly. Search techniques could then be used for
planning within this well-understood world. Learning could also be done within the blocks
world: there were only a few simple concepts worth learning and they could be captured by
enumerating the set of subexpressions which must be contained in any formal description
of a world including an instance of the concept. The blocks world was even used for vision
research and mobile robotics. as it provided strong constraints on the perceptual processing
necessary  Nilsson 84

Eventually eriticisiny <urfaced that the blocks world was a “toy world™ and that within
it there were simple special purpose solutions to what should be considered more general

problems At the same time there was a funding cnisis within Al (both in the US and
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Al through Building Robots 3

s the UK, the two most active places for Al research at the time). Al researchers found
‘ _ themselves forced to become relevant. They moved into more complex domains, such as
@ trip planning, going to a restaurant, medical diagnosis, etc.

l Soon there was a new slogan: “Good representation is the key to AI” (e.g. con-
. ceptually efficient programs in 'Bobrow and Brown 75]). The idea was that by representing
:: only the pertinent facts explicitly, the semantics of a world {which on the surface was quite
‘; complex) were reduced to a simple closed system once again. Abstraction to only the
‘f: relevant details thus simplified the problems.

Consider a chair for example. While the following two characterizations are true:
i (CAN (SIT-ON PERSON CHAIR))
;-;‘:; (CAN (STAND-ON PERSON CHAIR))
t there is much more to the concept of a chair. Chairs have some flat (maybe) sitting place,

with perhaps a back support. They have a range of possible sizes, requirements on strength,
and a range of possibilities in shape. They often have some sort of covering material, unless

"‘.' they are made of wood, metal or plastic. They sometimes are soft in particular places. They
;, can come from a range of possible styles. In particular the concept of what is a chair is hard
B to characterize simply. There is certainly no Al vision program which can find arbitrary
K chairs in arbitrary images: they can at best find one particular type of chair in carefully

selected images.

’4.‘ This characterization however is perhaps the correct Al representation of solving certain

j problems; e.g., a person sitting on a chair in a room is hungry and can see a banana hanging
k) from the ceiling just out of reach. Such problems are never posed to Al systems by showing
* them a photo of the scene. A person (even a young child) can make the right interpretation of
o “ the photo and suggest a plan of action. For Al planning systems however, the experimenter
::r: is required to abstract away most of the details to form a simple description in terms of
B atomic concepts such as PERSON, CHAIR and BANANAS.
E:' But this abstraction is the essence of intelligence and the hard part of the problems
ot being solved. Under the current scheme the abstraction is done by the researchers leaving
o little for the Al programs to do but search. A truly intelligent program would study the
;;: photograph. perform the abstraction and solve the problem.
;:: The only input to most Al programs is a restricted set of simple assertions deduced
M from the real data by humans. The problems of recognition. spatial understanding, dealing
20 with sensor noise, partial models, etc. are all ignored. These problems are relegated to the
. realm of input black boxes. Psychophysical evidence suggests they are all intimately tied
; ; up with the representation of the world used by an intelligent system.
:; There is no clean division between perception (abstraction) and reasoning in the real
:% world. The brittleness of current Al systems attests to this fact. For example, MYCIN
A Shortliffe 76 is an cexpert at diagnosing human bacterial infections. but it really has no
. model of what a human {or any living creature) is or how they work, or what are plausible
;:.:’ things to happen to a human. Il told that the aorta is ruptured and the patient is losing
.:: blood at the rate of a pint every minute. MYCIN will try to find a bacterial cause of the
o problem.

Thus. because we still perform all the abstractions for our programs, most Al work is

. {gx still done in the blocks world. Now the blocks are slightly different shapes and colors. but
‘z: N their underlyving semanties have not changed greatly.
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o
i It could be argued that performing this abstraction (perception) for Al programs is
:;'.‘ merely the normal reductionist use of abstraction common in all good science. The abstrac-
A tion reduces the input data so that the program experiences the same perceptual world
o (Merkwelt iUexkill 21°) as humans. Other (vision) researchers will independently fill in the
;gk details at some other time and place. | object to this on two grounds. First, as Uexkull
:: and others have pointed out, each animal species, and clearly each robot species with their
:':', own distinctly non-human sensor suites, will have their own diflerent Merkwelt. Second,
e the Merkwelt we humans provide our programs is based on our own introspection. It is
. by no means clear that such a Merkwelt is anything like what we actually use internally 1t
El could just as easily be an output coding for communication purposes (e.g., most humans go
x,," through life never realizing they have a large blind spot almost in the center of their visual
‘;5; fields).
ko The first objection warns of the danger that reasoning strategies developed for the
e human-assumed Merkuwelt may not be valid when real sensors and perception processing is
QN used. The second objection says that even with human sensors and perception the Merkwelt
},_1 may not be anything like that used by humans. In fact, it may be the case that our
A introspective descriptions of our internal representations are completely misleading and
e quite different from what we really use.
‘)
s C. Studying epicycles
: A
:\: For most of the history of astronomy, an earth centered model was used. As observations
became more accurate it was realized that the sun and planets did not have circular orbits
: around the earth. The solution was simple: Elaborate the assumed models. This led to the
> introduction of epicycles. smaller circular orbits whose centers rode on larger earth centered
f : circles called deferents to explain perturbations to circular planetary orbits. This was good
c: enough to explain the path in the sky traced out by the planets, but did not explain their
variable speeds. Ptolemy introduced two further variants: he moved the centers of the
;;s deferents off the earth (i.e. made them eccentric) and then made the angular velocity of
¢S the centers of the epicycles constant relative to a point opposite the deferent center from
.l‘::' the carth. known as the equant.
::0: This scheme did not lend itself to a mechanically obvious construction of the universe
and was therefore philosophically objectionable to some. Eventually Al-Tusi [Gingerich 86
NS produced a less objectionable model. without equants, with two more layers of epicyles on
..: top of each of the old epievices,
\: When the underlving model changed to a sun centered system all the centuries of
oo scholarship and computation of epicycles went out the window. Gaone. Useless.
I I suspect much of current Al work will in hindsight appear to have been chasing details
'§. of epicycles. Current models for Al are based on concepts of knowledge and beliel and
?.. symbol processing svstems. | claim that all such things are concepts invented by observers
x:':t' of intelligent systems to explain them. The intelligent systems themselves do not work like
1 that. They do not have atomie tokens as symbols. As observers we are ascribing tokens to
—~ complex rlasses of <states of complex processes. | believe AT will progress significantly only
) when the fundamental underlving model heing used moves towards process and away from
f':' state
b
»i,‘
.;»’.',
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Gt DAL " 1L ' " ' ey i ﬂ, ‘(' "’:r-;"'?‘ i, - y : ™ _, (_. T .‘ <2 ‘ Tedive '




) ‘ ’ Al through Building Robots 5
N 3. Intelligence from the bottom up.

/ @ The above considerations lead me to two major conclusions:

o  No toys. There is great methodological danger in tackling Al problems in toy worlds.
The definition of “toy” here includes all worlds where it is not up to the Al system itself

N
e to do all the understanding of the world itself without relying on a human interpreter.
‘ Likewise a world is a “toy™ world if the Al system is not responsible for carrying
; out its actions in the world without a human agent to interpret its responses. Such
requirements on an Al system thus force it to be part of a robot system acting in a
:: real world for some definition of real. This is a much stronger definition of real world
® than is normally used.
'E: e Different modulerity. True intelligence requires a vast repertoire of background capabil-
w ities, experience and knowledge (however these terms may be defined). Such a system
can not be designed and built as a single amorphous lump. It must have components.
',o; The same 1s true of existing Al systems. But true intelligence is such a complex thing
‘; that one can not expect the parts to be built separately, put together and have the
4 whole thing work. We are in such a state of ignorance that it is unlikely we could
. make the right functional decomposition now. Instead we must develop a way of in-

crementally building intelligence. Simple systems need to be debugged in real worlds
along the road to complex intelligent systems. A key problem then is how to perform
a decomposition which leads to an incremental path to intelligence.

iy ;.'..
w Worlds: toy and real

"
ot
::5 If the ultimate goal in building a human level intelligent system is to have it interact in
o some way with people in the world, then it should have as the basis of its experience and
5 being, down to the lowest levels. that same world.

There has been a long tradition of building artificial worlds for mobile robots (e.g.
:;: Nilsson 84 . Crowley 85 . Giralt et al 84'). Our carlier arguments were directed against
;t: such efforts which typically have constructed special rooms with walls and doorways having
:: regular properties. Usually in such cases even the artifacts within the world were also
D4 specially constructed.
. There is a more subtle mistake in building special environments however-often not
é| realized by researchers who believe they are using a “natural™ or “real” world (e.g. Moravec
84 ). All these past efforts in mobile robots have assumed a static environment. All methods
. of perception and planning are predicated in this fact. But any world involving people or
R even more than one robot is dynamic. Even an insect can survive (for a while at least) in
_ a dynamic world populated by hostile humans. Any “real” world therefore should include
:‘ dynamic aspects. Even better. the robot should be expected to operate in the presence of
" humans. It should operate in this manner even at its most primitive levels. Adding this
:: capability later will turn out to be much more difficult: as a data point consider that no
o existing mobile rohot project has been able to make this advance.
o .‘ﬂ: The best domain for trying 1o build a true artificially intelligent system is a mobile

"i‘."' robot wanderimp aronnd an enviromment which has not been specially structured for .
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Al through Building Robots 6

Decomposition

There are many possible approaches to building an autonomous intelligent system. As with
most engineering problems they all start by decomposing the problem into pieces, solving
the subproblems for each piece, and then composing the solutions.

Typically in Al the chosen decemposition is based on information processing functions.
Thus. for example, there may be a data-base and an inference engine. Or. in more complex
systems, there might be a stereo vision system producing a depth map, a model builder
which turns that into three dimensional primitives and their relations, a map builder which
integrates such observations into a global map. a task planner which uses the map informa-
tion to plan a sequence of actions for a robot. and a task execution system which tries to
carry out the plans.

Systems built under such a decomposition have a number of drawbacks. In particular
the system is usually only as strong as its weakest link. In addition such systems usually
have some central locus of control; perhaps procedural as in a central task planner, or
perhaps declarative as in a blackboard. I think of the first as a central bottleneck through
which even the most inconsegential actions must be planned. [Huttenlocher 84! has called
the latter an error propagation mechanism. | propose that rather than slicing the problem
on the basis of internal workings of the solution we should slice the problem on the basis of
desired external manifestations of the intelligent system.

The idea is to decompose the desired intelligent behavior of a system into a collection of
simpler behaviors. We build computational systems to achieve each of the more primitive
behaviors and then compose them into a more complex system. ldeally each individual
computational system should be independent of the others. In practice there will be some
overlap (just as happens in a more usual decomposition where for instance it is hard to tell
where the stereo depth system cnds and the three dimensional model builder begins).

An additional question is how this decomposition into behaviors should be organized.
In our work with mobile robots {Brooks 86’ we have used two principles.

e Each behavior should achieve some task. l.e.. there should be some observable phe-
nomenon in the total behavior of the system which can be used by an outside observer
to say whether the particular sub-behavior is operating successfully. As an example we
have a don’t hit things behavior for our robot. We refer to each sub-behavior as a task
achieving behavior.

e A set of task achieving behaviors together provide the robot with some level of com-
petence. They should be designed so that as new task achieving behaviors are added
to the system. the level of competence increases. A level of competence is a somewhat
informal specification of overall system performance. In Brooks 8 we organized our
task achieving behaviors in such a way as to generate strict linear ordering of levels
of competence (see figure 1). We arce currently working on a generalization of this

structure.
Decomposing an inteiligent system into independent task achieving behaviors has a number
of positive benefits,
e There are many parallel paths of control throngh the system Thos the performance

of the sv<tem i a given situation i~ not dependent on the performace of the weakest

Lk oo that sitnanon Rather it s dependent an the stronpest relevant behavior for
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wander

avoid objects

Figure 1. a. Functional decomposition. b. Behavior-based decomposition

the situation. That in turn is dependent on its own weakest link, but we are now
minimizing over a set preselected for its strength!

e  Often more than one behavior is appropriate in a given situation. The fact that the
behaviors are generated by parallel systems provides redundancy and robustness to the
overall system. There is no central bottleneck; procedural or declarative.

e  With some disciphne in structuring the decomposition, the individual task achieving
behaviors can run on separate pieces of hardware. Thus it leads to a natural mapping
of the complete intelligent system onto a parallel machine. The benefits are threefold:
(1) redundancy again, (2) speedup, and (3) a naturally extensible system.

4. Artificial Insects

Insects are not usually thought of as intelligent. However they are very robust devices. They
operate in a dynamic world. carrying out a number of complex tasks including hunting,
eating. mating. nest building. and rearing of young. There may be rain, strong winds,
predators. and variable food supplies all of which impair the insects’ abilities to achieve
its goals. Statistically however insects succeed. No human-built systems are remotely as
reliable. Reliability concerns both mechanical systems and information processing systems.
Thus | see insect level hehavior as a noble goal for artificial intelligence practitioners. 1

believe 1t is closer to the ultimate right track than are the higher level goals now being
pursted.

Progre ss

We have tested these ideas on how to decompose an intelligent system with a mobile robot

operating i laboratory and machine room environments. It operates at imsect Jevel intel-
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Figure 1. Three layered control system for an exploring robot

ligence. We have implemented the first three levels of task achieving behaviors shown in
figure 1. Figure 2 shows the implementation of those three layers in terms of simpler com-
putational modules. They operate in a dataflow fashion, sending messages asynchronously
without guarantee of delivery or even acknowledgement of receipt. {We place such loose
restrictions on the underlying computational engine in the belief that it will make 1t casy
to construct a large extensible piece of hardware meeting these modest goals.)

With just the lowest level of control the robot uses sonar to find a large empty space
and then sits there contented until a moving obstacle approaches. Twao people together
can successfully herd the robot just about anywhere through doors or between rows of disk
drives. for instance.

When the next level of control is added the robot 1s no longer content to sit in an open
space. After a few seconds it heads off in a random direction. Our uncalibrated sonars
and obstacle repulsion functions make it overshoot a little to locations where the runaway
module reacts

With the third level a sonar-based corridor finder (substituting for “stereo” o figure

L)
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Al through Building Robots 9

2) usually finds the most distant point in the room The robot heads off in that direction.
People walking in front of the robot cause it to detour. but it still gets to the initially desired
goal even when it involves squeezing between closely spaced obstacles. If the sonars are in
error and a goal is selected beyond a wall, say, the robot usually ends vp in a position where
the attractive force of the goal equals the repulsive forces of the wall. At this point avoid
does not issue any heading, as it would be for some trivial motion of the robot. The robot
sits still. defeated by the obstacle. The whenlook inodule. however. notices that the robot
is idle and initiates a new scan for another corridor of free space to follow .

Pragmatics

But wait! Pragmatism rears it ugly head. While artificial insects are fine and dandy from a
purely scientific research point of view. is it plausible that funders will believe in their long
range promise?

I claim that robot insects will gain more mass market acceptance than any expert
system built with current technology. They have the potential to change our daily lives
in much the way microprocessors have. Not in a single obvious way, but in many small
incremental ways. For example microprocessors abound in the household environment and
are sometimes the enabling technology of certain appliances. Microprocessors are under the
hoods of our automobiles, in microwave ovens, on our wrists. in our compact disk players.
in our television sets and VCRs and in our video games. There is a potential for even simple
insect like artificially intelligent robots to play similar roles.

For example, suppose we want to build a vacuum cleaning robot. It will not be a
robot that looks like a person and that carries the vacuum cleaner around: instead it will
Jook like a vacuum cleaner. which has been modified so that under its own propulsion 1
wanders around the house and cleans the floor. Such a robot might well be msect like in
its intelligence level. But unfortunately it will be quite large and may not be able to get
into the corners. So. there will be a natural niche in the home habitat for another little
robot which will be truly insect like. I like to think of it as about two inches in diameter
and about an inch thick. It will have four, perhaps six, legs sticking out of 1t. They will be
piezo-electrically operated. It will not matter which way up this robot 1s- it can be thrown
on the floor or fall down the stairs. It will sit on its belly and reach out its legs, digging
them into the carpet to drag itself across the floor. 1t will be controlled by an architecture
as we have described above and it will have a number of simultancous goals. One thing 1t
will like is corners. It will drag itself on its belly across the floor. (Incidentally it could be
solar powered or powered from the ambient light. because it does not have to move fast. In
fact there is an advantage because the cat will not be interested in it af it s slow moving )
It will use its legs as force sensors and thus detect when it has reached a wall. Once there.
one of the other level goals takes over and it will start looking around for dirt. 1t will pick 1t
up electrostatically (or with some as yet undetermined technology) and shove itin its belly
somewhere. At the same time it will also be dragging itself along. but now in a different
mode 1t will be near a wall so it drags itself along the edge. When it gets to a tri-hedral
vertex at the corner it will switch to another mode and <it there for a long time, picking up

dirt. Then after a while it will get bored and shoot ofl in some random direction. In this

way complete coverage of the house s achneved.
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Al through Euilding Robots 10

Now the only problem with this is, what should 1t do with the dirt? One approach i<
to have it go to some central location and get rid of the dirt But that imiphes extremely
good navigation abilities and a detatled model of the house. This s beyond a simple isect.
Instead, there will be another laver of control utilizing sound sen<ors. Tt will hsten for the
big vacuum cleaner. When 1t hears 1t, it will run to the middle of the room and dump its
guts all over the floor.

Such s the future.
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